A comparison of fluorescent Ca²⁺ indicators for imaging local Ca²⁺ signals in cultured cells.
نویسندگان
چکیده
Localized subcellular changes in Ca(2+) serve as important cellular signaling elements, regulating processes as diverse as neuronal excitability and gene expression. Studies of cellular Ca(2+) signaling have been greatly facilitated by the availability of fluorescent Ca(2+) indicators. The respective merits of different indicators to monitor bulk changes in cellular Ca(2+) levels have been widely evaluated, but a comprehensive comparison for their use in detecting and analyzing local, subcellular Ca(2+) signals is lacking. Here, we evaluated several fluorescent Ca(2+) indicators in the context of local Ca(2+) signals (puffs) evoked by inositol 1,4,5-trisphosphate (IP3) in cultured human neuroblastoma SH-SY5Y cells, using high-speed video-microscopy. Altogether, nine synthetic Ca(2+) dyes (Fluo-4, Fluo-8, Fluo-8 high affinity, Fluo-8 low affinity, Oregon Green BAPTA-1, Cal-520, Rhod-4, Asante Calcium Red, and X-Rhod-1) and three genetically-encoded Ca(2+)-indicators (GCaMP6-slow, -medium and -fast variants) were tested; criteria include the magnitude, kinetics, signal-to-noise ratio and detection efficiency of local Ca(2+) puffs. Among these, we conclude that Cal-520 is the optimal indicator for detecting and faithfully tracking local events; that Rhod-4 is the red-emitting indicator of choice; and that none of the GCaMP6 variants are well suited for imaging subcellular Ca(2+) signals.
منابع مشابه
Subplasma membrane Ca2+ signals
Ca(2+) may selectively activate various processes in part by the cell's ability to localize changes in the concentration of the ion to specific subcellular sites. Interestingly, these Ca(2+) signals begin most often at the plasma membrane space so that understanding subplasma membrane signals is central to an appreciation of local signaling. Several experimental procedures have been developed t...
متن کاملCa2+ signalling by P2Y receptors in cultured rat aortic smooth muscle cells
BACKGROUND AND PURPOSE P2Y receptors evoke Ca(2+) signals in vascular smooth muscle cells and regulate contraction and proliferation, but the roles of the different P2Y receptor subtypes are incompletely resolved. EXPERIMENTAL APPROACH Quantitative PCR was used to define expression of mRNA encoding P2Y receptor subtypes in freshly isolated and cultured rat aortic smooth muscle cells (ASMC). F...
متن کاملCalibration of fluorescent calcium indicators.
During the past decades, many different fluorescent indicators have been developed for measuring intracellular ion concentrations. Of particular interest are fluorescent calcium indicators because of the fundamental role of Ca in various cellular processes such as contraction, secretion, and gene activation. For a quantitative understanding of the physiological roles of Ca, fluorescence signals...
متن کاملHighlighted Ca2+ imaging with a genetically encoded ‘caged’ indicator
Genetically encoded fluorescent indicators for bioimaging are powerful tools for visualizing biological phenomena in specified cell types or cellular compartments. However, available gene promoters or localization sequences are not applicable for visualizing all expression events. Furthermore, a visualization technique focusing on single cells or cellular compartments is required for characteri...
متن کاملSHOOT REGENERATION FROM SAFFRON PROTOPLASTS IMMOBILIZED IN Ca-ALGINATE BEADS
Saffron (Crocus sativus L.) protoplasts were isolated from the cells of a suspension culture or calli with a solution of Cellulase, Pectinase and Hemicellulase and embedded in Ca-alginate beads. They were cultured with or without nurse cells in MS medium supplemented with 2,4-D and 6-benzylaminopurine at 25°C. After several changes of medium, cell-clusters appeared on the surface of the Ca-algi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell calcium
دوره 58 6 شماره
صفحات -
تاریخ انتشار 2015